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Increasing detectability in semiconductor
foundry by multivariate statistical process
control

Chyan Yang�, Chao-Jung Chang, Han-Jen Niu and Hsueh-Chang Wu

Department of Management Science, National Chiao Tung University, Hsinchu City, Taiwan, Republic of China

Quality has become a key determinant of success in all aspects of modern industries. It is especially
prominent in the semiconductor industry. This paper reviews the contributions of statistical analysis
and methods to modern quality control and improvement. The two main areas are statistical process
control (SPC) and experimentation. The statistical approach is placed in the context of recent
developments in quality management, with particular reference to the total quality movement.
In SPC, Hotelling T2 has been applied in laboratories with good result; however, it is rarely used in

mass production, especially in the semiconductor industry. An advance process control (APC) of R&D
study, involving Hotelling T2 and principal component analysis (PCA), is performed on a high density
plasma chemical vapour deposition (HDP CVD) equipment in the 12-inch wafer fab. The design of
experiment (DOE) of gas flow and RF power effects is used to work the feasibility of PCA for SPC
and examine the correlation among tool parameters. In this work, the Hotelling T2 model is shown
to be sensitive to variations as small as (þ/2)5% in the tool parameters. Compared with classical
PDCA and qualitative analysis, applying statistical in process control is more effective and indeed
necessary. This model also is especially suitable to the semiconductor industry.

Keywords: statistical process control (SPC); advance process control (APC); fault detection and
classification (FDC); Hotelling T2; principal component analysis (PCA); semiconductor industry

Introduction

Statistical process control (SPC) is a tool of fault detection and classification (FDC) in advance

process control (APC). SPC is an integral part of maintaining and improving quality. Failure to

implement and operate SPC effectively can significantly impede a company’s ability to meet

product specifications, limit waste, reduce production costs and generally improve quality

(Goetsch & Davis, 1994). In the semiconductor industry, process monitoring and continuing

controls are used to reduce waste rate and product cost.

A lot of quality researchers have considered qualitative analysis, such as PDCA, variety of charts

(Franceschini, 2002;Mukhopadhyay, 2001; Rahim&Ben-Daya, 2001; Tagaras&Nikolaidis, 2002);
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few used multivariate analyses. Qualitative analysis, however, cannot be elaborated to explain

all the variations. It is especially true in the semiconductor chemical vapour deposition (CVD)

process, where there are various chemical deposition reactions in the process. SPC is a statistical

technique used to monitor and further control processes to reduce production variation.

Variation reduction is a key aspect to improve quality. Although SPC was relatively complex

and difficult for the majority of employees, clearly SPC is as important as it is difficult.

High-density plasma CVD (HDP CVD) is a high-density mixture of gases at low pressure,

which is directed toward the surface of a wafer in the reaction chamber. Multivariate analyses

have been extensively applied in process control in manufacturing (Kesavan & Lee, 2001; Dunia

& Qin, 1998; Wang et al., 2002). In the operation and control of chemical processes, principal

component analysis (PCA) has been applied for measured data, monitoring multivariate pro-

cesses, understanding processes, reconstructing and identifying faults and so on (Kresta et al.,

1991; Konsanovich et al., 1996; Dunia & Qin, 1998). However, PCA is rarely used on real

mass production lines, especially in the semiconductor industry, even though it has been

employed in laboratories with good results. Thus, multivariate SPC was scarcely investigated

by these relating studies. This paper discusses multivariate analysis of SPC applied in the

HDP CVD process in an integrated circuit (IC) Foundry.

Statistical process control

The popularity of TQM and its related practices, such as statistical process control (SPC), quality

circles, benchmarking and business process re-engineering, and ISO 9000 certification are always

adopted in industries (Terziovski et al., 1999). SPC is the most potentially effective quality tool

(Cheng & Dawson, 1998; Harris & Yit, 1994), through the development of diagnostic and

problem-solving skills. In manufacturing processes and company management, SPC is an

increasingly popular statistical technique used to control processes and to reduce variation.

Quality is therefore an important aspect for any company to maintain competitiveness. Wang

& Eldon (2003) pointed out that SPC is a measurement procedure or instrument that is adequate

for monitoring the performance of a process. The classical control chart method is widely used

and calculated in process control (Lewis, 1993; MacCarthy & Wasusri, 2001; Wang & Eldon,

2003); however, this approach only provides the point estimates on the variance components

of the measurement error study (Wang & Eldon, 2003). SPC is effective in process of

control; Tagaras (1994) supported that SPC activities can contribute to modelling and cost mini-

misation. Many processes must be monitored by using observations that are correlated, and SPC

is able to provide an attractive solution for the performance monitoring. Modarress et al. (2000)

applied SPC as a means to predict uncertainties in production demand in the short run. Mandal

(2004) also supported that large businesses today maintain large databases for controlling and

improving their business process, and therefore for addressing the data quality problems that

may be faced in implementation of SPC. SPC was applied to reduced the moisture content

percentage (MC%) in tobacco (Mukhiopadhyay, 2001). As the relevant studies show above,

multivariate analysis is a comprehensive fullness tool for data mining.

Dale et al. (1990) conducted a study involving the use of SPC by part/component suppliers in

the automotive-related industry, but 77% of 158 respondents had experienced difficulties in

introducing SPC. In addition, 82% of the respondents indicated that they had encountered diffi-

culties with its applications and development. Multivariate analysis is hard to master, and rarely

is it utilised in mass production. Our study, therefore, is to hold an experiment to perform multi-

variate analysis of SPC in the CVD process.
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High-density plasma CVD and shallow trench process

A recent development in plasma-assisted CVD is high-density plasma CVD (HDP CVD). This

method of deposition became extensively accepted in advanced wafer fabrications in the mid-

1990s. As its name suggests, the plasma in HDP CVD is a high-density mixture of gases at

low pressure, which is directed toward the surface of the wafer in the reaction chamber. The

main advantage of HDP CVD is that it can deposit films to fill gaps with high aspect ratios

over a range of deposition temperatures of 300 to 4008C. HDP CVD was initially developed

for interlayer dielectric (ILD) applications, but is also being employed for deposition in ILD-1,

shallow trench isolation, etch-stop layers, and the deposition of low-k dielectrics.

The HDP CVD reaction involves a chemical reaction between two or more gas precursors. In

the deposition of oxide ILD, oxygen (or ozone) is frequently used with a silicon-containing gas,

such as silane (SiH4) or Tetraethoxy silane (TEOS), along with argon. A source excites the gas

mixture with radiation frequency (RF) or microwave power (2.45 GHz) and directs the plasma

ions into a dense region above the wafer surface to generate the high-density plasma.

For a long time, local oxidation of Si (LOCOS) was the standard technology for providing

electrically isolating active devices in integrated circuits (IC). As the demands for smaller geo-

metry and higher circuit density increases, even more stringent requirements are being placed

upon the isolation performance, and problems with LOCOS are beginning to surface. To over-

come these limitations, IC manufacturers have actively pursued an alternative process called

shallow trench isolation (STI) as a substitute to LOCOS for isolating devices (Fazan &

Mathews, 1993). STI allows for higher chip density and so increases the efficiency of use of

Si wafers. A typical STI process involves etching a trench pattern through a nitride layer,

through a thin pad oxide layer and into the silicon. Subsequently, a chemical vapour deposited

(CVD) oxide is laid over the entire wafer, filling the trench area and overlying the nitride-

protective active region. Chemical mechanical polishing (CMP) is then used to planarise the

topography obtained by the preceding deposition processes, stopping on the nitride layer. The

remaining nitride is subsequently removed by wet chemistry or reactive ion etching (RIE).

The STI CVD process is more complex than the general production process. Hence, SPC of

univariate analysis is inadequate within the various parameters.

Principal component analysis and Hotelling T2

Principal component analysis (PCA) is one of the most popular statistical methods for extracting

information from measured data in the operation and control of chemical processes design of

experiment (DoE).

If the tool parameters as a function of time are considered as a data matrix X, then this data

matrix can be modelled using PCA as

X ¼ 1� X þ T � P0 þ E

where X is the average matrix; T is the score matrix, Ṕ is the loading matrix, and E is the residual

matrix.

The principal component scores (t1, t2, t3,. . ..) are columns of the score matrix T. The residual

matrix E can be used to calculate the distance to the model in X space (DModX ). The residual

standard deviation (RSD) of an observation in X space is proportional to the observed distance to

the hyperplane of the PC model in X space. The observed distances to the PC model in X space
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(DModX ) are presented as linear plots. A DModX that exceeds the critical DModX reveals that

the observation may be an outlier in X space. Normally, such distances are determined after all

components have been extracted.

The distance to the model (DModX ) of an observation in a worksheet which is part of the

model is

si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
e2ik

(K � A)

s
� v

where v is a correction factor (which is a function of the number of observations and the number

of components), and slightly exceeds unity. This correction factor takes into account the fact that

the DModX is expected to be slightly smaller than the actual value for an observation in part of

the training set because it has affected the model.

The normalized distance to the model is the observed absolute DModX divided by the pooled

RSD of the model s0

s0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP P
e2ij

(N � A� A0)� (K � A)

s

where A0 ¼ 1 if the model is centred at zero; otherwise (si/s0)
2 has an approximate F distribution

from which the probability of membership to the model can be determined.

The distance to the model in X space (row RSD), after A components (the selected dimension),

for the observations is used to fit the model. If you select component 0, which is the

standard deviation of the observations with scaling and centering as specified in the

worksheet (without row means subtracted), it is the distance to the origin of the scaled coordinate

system.

In complex tool state monitoring, the Hotelling T2 control chart is employed as a tool for

detecting and classifying faults. It summarises all the process variables and all the model dimen-

sions, indicating how far from the centre (target) the process are along the principal component

model hyperplane.

The Hotelling T2 for observation i, based on A components is,

T2
i ¼

XA
a¼1

t2ia
s2ta

where sta
2 is the variance of ta according to the class model

T2
i � N(N � A)=A(N2 � 1) � Fa(A, N � A)

where N is the number of observations in the model training set, and A is the number of com-

ponents in the model or the selected number of components.
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Therefore, if

T2
i . A(N2 � 1)=N(N � A)� Fa(p ¼ 0:05)

then observation i lies outside the 95% confidence region of the model.

The confidence region of a two-dimensional score plot of dimension a and b is an ellipse with

axis

s2taortb � Fa(2, N � 2)� 2(N2 � 1) N(N � 2)=
j k1=2

At zero significance level, the confidence region becomes infinite and is not shown on the plot.

Traditionally, FDC is regarded as a two-step process in manufacturing. Recently, Goodlin

et al. (2002) proposed a simultaneous fault detection and classification technique that utilises

the fault vector approach to minimise the time to find, classify and correct the faults. The

method reveals that different faults occur with different vector units in the space, and so provides

a means of concurrently detecting and classifying faults.

This work examines an approach to simultaneous FDC that involves the PCA method, Hotell-

ing T2 and the DModX control chart to detect the designed faults of gas flow and RF parameters

and classify the faults using PCA vector space on HDP CVD equipment.

Experiment

This study is dedicated to the shallow trench isolation (STI) CVD process, performed on the

commercially available Applied Material 300 mm HDP CVD tool. The purpose of this

process is to deposit a USG stack using high-density SiH4/Ar plasma. The STI CVD process

is composed of a series of 17 steps. The first three steps stabilise the wafer load and pressure

stabilisation. Step 4 is a brief plasma ignition step. Steps 5 to 8 cause the gas to flow and

heat the chamber. Steps 9 to 11 are the main steps for depositing the STI layer. Steps 12 to

17 shut off the gases, cool the chamber, shut off RF and unload the wafer. The process chemistry

is identical from Step 9 to Step 11. However, this experiment only focuses on the main

deposition steps, which are key to the entire process; all the analysed data are based on these

steps (Steps 9 to 11).

A data collection module was installed in an HDP CVD tool to collect real-time tool state vari-

able parameters (SVIDs) during the processing of the wafer. Forty-five parameters were used in

the collection plan and the sampling rate of the collection was set to 1 Hz. Ninety-six golden

wafers data were identified to build up the distinguished model. Twenty-five wafers

(No. 51 � 75) were designed to study the effects of gas flow and RF power variation during

the main deposition step, and we set the variance range within +5%. Table 1 lists the

information on the controlled wafers.

Results and discussion

Figure 1 plots the PCA scores of the first two principal components (t1, t2) of the sample wafers.

The figure shows that O2(side), SiH4(side) and He(top) DoE wafers are the strong outliers, at a

95% confidence level, indicating that the three gas flow parameters may have stronger
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correlations with other tool parameters. Figure 2 plots DModX versus sample wafers. The DoE

wafers differ significantly from the golden wafers. The first wafer effect is also determined by

DModX calculation.

Figure 3 presents the DModX analysis, with grouping by delivery system, thermo system,

vacuum system and RF system. Figure 3a reveals that only gas flow DoE wafers are captured

by delivery system subgroup DModX, indicating that neither the RF power nor the first wafer

effect substantially affect the delivery system parameters. However, the RF system subgroup

DModX captures O2(side) and SiH4(side) gas flow DoE wafers as well as RF DoE wafers

(Figure 3b). This is due to the flow variation of O2(side) and SiH4(side) gases, which are the

dominant gases in the oxide plasma deposition process. The flow variation of O2(side) and

SiH4(side) gases changes the chamber impedance, causing RF power fluctuation. Figure 3c

Table 1. The controlled information in the design of
experiment.

Parameters Setting Wafer no.

O2(side) +5% 56, 57
SiH4(side) +5% 58, 59
SiH4(top) +5% 61, 62
He(top) +5% 63, 64
He(side) +5% 66, 67
RF(top) +5% 68, 69
RF(side) +5% 71, 72
RF(bias) +5% 73, 74

Figure 1. The plot of principal component t1 versus t2 for sample wafers.
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reveals that the He(top) and SiH4(side) DoE wafers are also found in the DModX vacuum sub-

group system, indicating that He(top) and SiH4(side) might affect the integrity of the vacuum.

The reason requires further investigation. The first wafer effect is significant in the thermal sub-

group system, as depicted in Figure 3d, indicating that the first wafer effect follows primarily

from the thermal variation, as clearly indicated by the chamber dome heater temperature as a

function of the sample wafer (Figure 4). The dome heater shows a period of fluctuation

during every first wafer processing.

The fault classification method is based on the fault space vector technique. In the multivariate

tool-variable parameter space, the basis for the use of the fault-specific space vectors is the

notion that different classes of faults are typically associated with unique directions (paths)

away from the normal condition. The deviation from the normal process is thus expected to

fall on a straight line as the number of faults as a particular class is increasing. Such faults

can then be linear combinations of tool-variable parameters.

The DoE faults are projected onto the three-component PCA space. Each fault is represented

by a unique space vector (Figure 5).

In this study, using multivariate analyses, some phenomena became more apparent. First, the

SiH4(side) and He(top) gas flow seem to affect the stability of the vacuum. The reason must be

investigated further. Second, the variations of O2(side) and SiH4(side) gas flow disturb the RF

power and affect the chamber impedance condition. The RF system subgroup DModX results

indicate that O2(side) and SiH4(side) gas flow are highly significant compared with other par-

ameters. This is because the variations of O2(side) and SiH4(side) dominate the plasma quality

in the oxide deposition process. Third, the fault space vector method approach can be used for

classifying faults. Eigenvectors can be used to classify each fault according to a specific space

vector, which can be treated as an index of fault classification, enabling the root causes of

process fluctuation to be traced.

Figure 2. The plot of PCA distance to model versus sample wafer number.
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Figure 3. PCA distance to model analysis by delivery (3a), RF (3b), vacuum (3c) and thermal (3d) subgroup
system.
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This work presents a concept of simultaneous fault detection and classification by multivariate

analysis of SPC, and addresses a few issues that affect manufacturing equipment. Multivariate

control charts of the fault spaces are powerful tools for both detecting out-of-control situations

and diagnosing causes. The only prerequisite for applying these methods is the availability of a

good database on previous operations.

Figure 3. Continued.
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Conclusion

Mutivariate SPC of fault detection and classification is an important step in process control.

From the experiment applying a HDP CVD above, we can advocate that SPC of mulitvariate

analysis will be more elaborate than qualitative analysis will be for process management.

This method represents a breakthrough in the monitoring of a semiconductor manufacturing pro-

duction line; relevant inferences regarding the current state of the equipment can be drawn, pre-

venting yield loss and eliminating further damage to machines.

In semiconductor manufacturing, thousands of parameters govern the production line and are

hard to monitor simultaneously. The traditional SPC method can only provide a basic way to

monitor several parameters, which are identified in advance as the key to the process or equip-

ment. Accordingly, extending PCA of the Hotelling T2 control chart is a powerful method of

multivariate analysis that can reduce the current heavy data management problem to a single

Figure 5. Fault space vectors are projected on the three-component PCA space.

Figure 4. Four zones of dome heater temperature versus sample wafer number.
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process control chart. In addition, the Hotelling T2 control chart can easily detect 5% variation in

the single gas flow and RF power parameter. The model resolution is sufficiently high to detect

faults with +5% variation. The wafer selection associated with the model must be performed

more strictly, and governed by more reasonable criteria, to increase the resolution.

The first wafer effect on the HDP CVD tool is primarily associated with the variation in the

dome-heater/thermal system. The first few wafers always suffer some problems caused by the

instability of chamber conditions or hardware transient states, which are responsible for the well-

known ‘first wafer effect’. There are also some limitations of the research to be considered.

Sometimes, the root cause of the first wafer effect is not easy to extract from the thousands of

data. The tiny variation in each parameter cannot be discriminated by the univariate analysis

method but all variations in parameters will be summed to a single larger number in the multi-

variate analysis model, to discriminate a fault.

Future research should involve more external sensors (such as RGA, OES, V.I. Probe and

others) on a tool to retrieve more detail chamber information, a golden model should be built,

and sensor parameters should be matched to physical states and then an analysis undertaken.

Predicting bottlenecks will help in extracting useful information from raw data and then

identifying specific correlations between external sensors and actual components of a piece of

equipment.

In sum, we expect to contribute to more elaborate analysis of process control. At a time when

quality researchers are challenged to provide research with practical implications, it is also

believed that this study may be used by managers to pursue processing control while taking

multivariate analysis of SPC into consideration.
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